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ABSTRACT: A model is formulated for diffusion-con-
trolled polymer dissolution and simultaneous drug release
for amorphous, uncrosslinked polymers. Calculated frac-
tional drug release versus time curves are similar to exper-
imental curves reported in the literature. Solutions of the
transport equations provide a way of illustrating how poly-

mer type and molecular weight can be used in an attempt to
approach a constant drug release rate. © 2004 Wiley Periodi-
cals, Inc. J Appl Polym Sci 93: 92–99, 2004
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INTRODUCTION

The ability to supply materials such as drugs at pre-
scribed rates can often be facilitated by utilizing a
polymer matrix as a binder in which the drug is mo-
lecularly dispersed or dissolved. The dissolution be-
havior of the polymer can then be used to control the
rate of drug release. In general, the following three
classes of polymeric materials can be used in an at-
tempt to control the drug release process: (1)
crosslinked polymers; (2) semicrystalline polymers; (3)
amorphous, uncrosslinked polymers.

For crosslinked polymers, the release of a drug can
be regulated by adjusting the degree of polymer
crosslinking. However, crosslinking agents are often
toxic and can cause adverse interactions in the body
after the drug is released. For semicrystalline poly-
mers, drug release can be controlled by the appropri-
ate choice of polymer type, polymer molecular weight,
degree of crystallinity, and crystallite size. A modeling
analysis of drug release by using a semicrystalline
polymer is complicated by the need to consider trans-
port processes in a heterogeneous material and to
include a crystal dissolution process in the formula-
tion of the pertinent transport equations. For amor-
phous, uncrosslinked polymers, drug release rates can
be controlled by varying the polymer type and/or
polymer molecular weight. No toxic crosslinking
agents are involved, and the transport analysis is
somewhat simpler than that for semicrystalline poly-
mers. Thus, amorphous, uncrosslinked polymers were
chosen as the basis for this study.

The principal objective of this article was to formu-
late a model for diffusion-controlled polymer dissolu-
tion and simultaneous drug release for amorphous,
uncrosslinked polymers. In addition, solutions of the
transport equations were used to illustrate how poly-
mer type and molecular weight can be varied to ap-
proach a constant drug release rate (zero-order deliv-
ery). The calculated fractional drug release versus time
runs obtained from the model are similar in shape to
experimental curves reported in the literature.1–4

The basic approach used in the investigation to
model simultaneous polymer dissolution and drug
release is similar to the approach utilized in analyzing
the dissolution of rubbery and glassy polymers.5 In
that previous study, the dissolution process was ana-
lyzed by using a single liquid phase, which consisted
of a binary liquid mixture of solvent and polymer.
Previous mathematical models for polymer dissolu-
tion and drug delivery were reviewed by Narasim-
han,6 and the present investigation presents a some-
what different analysis of the polymer dissolution and
drug release processes than previously presented in
the literature. Note that the components of the ternary
system considered here will be referred to as follows:
drug-component, 1; polymer–component, 2; solvent–
component, 3.

ASSUMPTIONS OF MODEL

The following assumptions and restrictions are used
to define the transport process in this model:

1. The polymer is an amorphous, uncrosslinked
polymer, and both glassy and rubbery regions
of the system contain no crystals.

2. The polymer, drug, and solvent are assumed to
be completely miscible so that the entire system
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comprises a single liquid phase.5 The drug will
have been dissolved initially in the polymer
matrix at a concentration below the solubility
limit.

3. The diffusion process is isothermal; there are no
chemical reactions, and the effect of pressure on
liquid density is negligible.

4. The polymer is initially in the glassy state but
gets converted to a rubbery state as the solvent
diffuses into the polymer matrix. For the rub-
bery state, it is assumed that the partial specific
volumes of the polymer-drug-solvent system
are independent of composition. For the glassy
state, the addition of solvent leads to structural
rearrangements in the polymer matrix, and the
partial specific volumes of the system effectively
become concentration dependent.7,8 Hence, for
the rubbery polymeric system, the volume av-
erage velocity �‡ is described by the equation

� � �‡ � 0 (1)

but, for the glassy polymeric system, the follow-
ing result is applicable:

� � �‡ � 0 (2)

For a glassy polymer, therefore, there can be a
velocity field induced by the nonequilibrium
volumetric properties of the glass. This induced
velocity field can have a significant effect on the
overall mass transfer process. For integral sorp-
tion in a glassy polymeric film, in which there
are two immiscible liquid phases, the combina-
tion of the induced velocity field and the mov-
ing phase boundary produces a term which can-
not be neglected and which changes the charac-
ter of the mass transfer process.8 However, for
the dissolution of a glassy polymer which con-
sists of a single liquid phase, the effect of the
induced velocity is small and can be neglected.5

Consequently, for our single liquid phase
model, we can assume that eq. (1) will ade-
quately describe variations of the volume aver-
age velocity in the dissolution process for both
glassy and rubbery regions of the system.

5. The diffusion process in the drug release system
is considered to be a one-dimensional transport
process in which a pure solvent is put into con-
tact with a drug-containing polymer film of ini-
tial thickness L0. For simplicity in the analyses, it
is also assumed that the drug–polymer combi-
nation initially is adjacent to a solid, stationary
wall. Consequently, the diffusion field extends
from the solid wall at x � 0 to x � �, where x is
the distance variable in the diffusion direction.

6. For this polymer-drug-solvent system, the dif-
fusion Deborah number will be either high or
low for most of the diffusion field.5 Conse-
quently, it is assumed (as a first approximation)
that there is a Fickian diffusion process with
concentration-dependent diffusion coefficients
essentially everywhere in the system.

7. There is no external flow in the fluid surround-
ing the dissolving polymer-drug film. Our in-
vestigation of a static system should thus pro-
vide maximum polymer dissolution and drug
release times for a particular polymer-drug-sol-
vent system at a given temperature.

8. In general, a ternary system of components 1, 2,
and 3 can be analyzed by using four mutual
diffusion coefficients D11, D12, D22, and D21. We
assume that the cross-term diffusion coefficients
(D12 and D21) are very small and that the main-
term diffusion coefficients (D11 and D22) depend
on concentration:

D12 � 0 (3)

D21 � 0 (4)

D11 � D11��1, �2� (5)

D22 � D22��1, �2� (6)

Here �1 is the mass density of the drug and �2 is
the mass density of the polymer. Although the
assumption that cross-diffusion effects are small
for the polymer-drug-solvent system appears to
be reasonable, there seems to be no diffusion
coefficient data which can provide justification
for this assumption.

The above assumptions are used to formulate ap-
propriate species continuity equations in the next sec-
tion of the article. Before this is done, the simplifica-
tions that are introduced by the assumption that the
diffusion problem is a one-dimensional transport pro-
cess should be discussed. Because eq. (1) is utilized for
both glassy and rubbery regions in the system, the
following result is valid for a one-dimensional diffu-
sion process in rectangular coordinates:

��x
‡

�x � 0 (7)

Here, �x
‡ is the x component of the volume average

velocity. Because the solid wall at x � 0 can be con-
sidered to be impermeable, we can write

�x
‡ � 0, x � 0, t � 0 (8)
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where t is time. It thus follows from eqs. (7) and (8)
that

�x
‡ � 0 (9)

everywhere in the diffusion field (both glassy and
rubbery regions) for all time. It can also be shown that
the radial component of the volume-average velocity
is zero when there is only radial diffusion in cylindri-
cal and spherical geometries which extend to the ori-
gin of the coordinate system. For these two geome-
tries, eq. (8) is replaced by the requirement that the
volume-average velocity is bounded at the origin of
the coordinate system. Consequently, if pressure ef-
fects on the diffusion process can be considered to be
negligible for the polymer-drug-solvent system, then
the species continuity equations for the drug and the
polymer can be solved for �1 and �2. There are no
convective terms in the species continuity equations
because �x

‡ � 0. The single remaining equation of
motion and the thermal equation of state can then be
used to determine the pressure field and the distribu-
tion of the total mass density of the mixture, �, in the
system. However, the pressure and density calcula-
tions are not actually needed for the one-dimensional
diffusion process considered here because the species
continuity equations are not coupled to the x compo-
nent of the equation of motion.

It is sometimes stated in the literature that the as-
sumption of one-dimensional diffusional transport
can be easily relaxed to include two- and three-dimen-
sional transport processes. This statement is not gen-
erally true. For example, when considering a three-
dimensional diffusion process, it is not correct to con-
clude simply that �‡ � 0 even if there are solid walls in
the system. Although eq. (1) is valid everywhere in the
system, no direct information about the three velocity
components can be obtained from this equation only
because there are three unknowns in a single equation.
Consequently, the convective terms in the species con-
tinuity equations cannot in general be set equal to
zero, and, therefore, the species continuity equations
will be coupled with eq. (1) and with the three equa-
tions of motion. Thus, for a three-dimensional diffu-
sion problem for a ternary system, it is necessary to
solve seven equations [two species continuity equa-
tions, eq. (1), three equations of motion, and a thermal
equation of state] for seven unknowns (�1, �2, �, three
components of velocity, and pressure). Clearly, chang-
ing from one to three spatial dimensions is not trivial.
Often what has been done for three-dimensional prob-
lems is that the convective terms in the species conti-
nuity equations are ignored without comment. We do
not believe that these convective terms can be ex-
cluded without justification.

FORMULATION OF TRANSPORT EQUATIONS

Species continuity equations for the drug and polymer
can be formulated for the one-dimensional transport
problem by excluding cross-diffusion effects and by
using the fact that �x

‡ � 0 to eliminate the convective
terms. The dimensionless forms of the species conti-
nuity equations and corresponding boundary condi-
tions for the drug and polymer subsequently can be
written as:

�C1

��
�

�

�� �D11

Ds2

�C1

�� � (10)

�C1

��
� 0, � � 0, � � 0 (11)

C1 � 0, � � �, � � 0 (12)

C1 � 1, � � 0, 0 	 � 
 1 (13)

C1 � 0, � � 0, 1 
 � 	 � (14)

�C2

��
�

�

�� �D22

Ds2

�C2

�� � (15)

�C2

��
� 0, � � 0, � � 0 (16)

C2 � 0, � � �, � � 0 (17)

C2 � 1, � � 0, 0 	 � 
 1 (18)

C2 � 0, � � 0, 1 
 � 	 � (19)

D11 � D11�C1, C2� (20)

Ds1 � D11�0, 0� (21)

D22 � D22�C1, C2� (22)

Ds2 � D22�0, 0� (23)

C1 �
�1

�10
(24)

C2 �
�2

�20
(25)

� �
x
L0

(26)

� �
Ds2t
L0

2 (27)
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Here, �10 is the initial mass density of the drug in the
polymer film and �20 is the initial mass density of
polymer in the polymer film. Also, Ds1 and Ds2 refer to
values of D11 and D22 in an infinite sea of solvent.

The above set of equations can be solved numeri-
cally if expressions for the concentration dependencies
of D11/Ds2 and D22/Ds2 are known. In this study, we
use a weighted residual method to obtain an approx-
imate analytical solution, and we use free-volume the-
ory to suggest forms for the concentration dependen-
cies of the diffusion coefficients. Equations based on
the free-volume theory of diffusion9–11 can be written
for D1, the self-diffusion coefficient for the drug, and
D2, the self-diffusion coefficient for the polymer:

D1 � D01exp��
��1V̂*1 � �2V̂*2

�13

�23
� �3V̂*3�13�

V̂FH/
� (28)

D2 � D02exp��
��1V̂*1

�23

�13
� �2V̂*2 � �3V̂*3�23�

V̂FH/
� (29)

V̂FH


�

�1f1V̂1
0

1
�

�2f2V̂2
0

2
�

�3f3V̂3
0

3
(30)

Here, D0I is the preexponential factor for component I,
�I is the mass fraction of component I, fI is the frac-
tional hole free volume of pure component I at the
diffusion temperature, V̂I

0 is the specific volume of
pure component I at the temperature of interest, V̂*I is
the specific critical hole free volume of component I
required for a jump, V̂FH is the average hole free
volume per gram of mixture,  is the average overlap
factor for the mixture which is introduced because the
same free volume is available to more than one jump-
ing unit, I represents the overlap factor for the free
volume of pure component I, and �I3 represents the
ratio of the critical molar volume of a jumping unit of
component I to the critical molar volume of the jump-
ing unit of the solvent. Equations (28) and (29) should
be used at a single temperature because the effective
energy per mole that a molecule needs to overcome
attractive forces has been incorporated in the preex-
ponential factor for each component.

We now use the above free-volume formulation for
self-diffusion coefficients to suggest reasonable ap-
proximate concentration dependencies for the two
mutual diffusion coefficients, D11 and D22. To facilitate
the analysis of our one-dimensional transport prob-
lem, we introduce the following four assumptions:

1. It is assumed that
Ds1 � Ds2 � Ds (31)

so that the time scales for polymer dissolution
and drug release are comparable. It seems pref-
erable to have the polymer dissolution and drug
release processes occur simultaneously. Because
Ds2 represents the polymer diffusion coefficient
in an infinite sea of solvent, Ds2 is a function of
polymer molecular weight.12 Consequently, the
equality of eq. (31) can be achieved by appro-
priate choice of the molecular weight of the
polymer.

2. It is assumed that the jumping units of the drug
and polymer are very nearly the same so that

�13

�23
� 1 (32)

Because many drugs are large molecules, this
appears to be reasonable.

3. It is assumed that the concentration dependen-
cies of D11 and D22 can be ascertained from the
concentration dependencies of D1 and D2. Free-
volume theory gives equations only for the de-
pendencies of D1 and D2 on �1 and �2. It does
not directly give equations for the dependencies
of D11 and D22 on �1 and �2. However, it seems
reasonable to expect that free-volume theory
will suggest a general form for the dependen-
cies of D11 and D22 on �1 and �2.

4. It is assumed that the concentration dependencies
of the mutual diffusion coefficients are similar in
both the glassy and the rubbery states of the poly-
mer. This assumption was utilized implicitly in
the dissolution investigation,5 and it appears to be
a reasonable approximation to use in an initial
study of the present transport problem. In general,
a stronger concentration dependence would be
expected for glassy polymer-penetrant systems
because the free volume for such systems is gen-
erally lower. However, illustrative free-volume
calculations11 of the concentration dependence of
penetrant self-diffusion coefficients indicate that a
wide variety of behavior is possible for the con-
centration dependence because of structural rear-
rangements in the glassy region when penetrant is
added. Additionally, at the glass transition tem-
perature, the concentration derivative for the self-
diffusion coefficient is greater in the rubbery
state.13 These variations in behavior do not ex-
clude the possibility of similar behavior in both
glassy and rubbery states.

Utilization of the above four assumptions produces
the following result for the two mutual diffusion co-
efficients:

D11

Ds
�

D22

Ds
�

D01

Ds
exp��

��1V̂*1 � �2V̂*2 � �3V̂*3�13�

V̂FH/
� (33)
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Because the solvent has more free volume than the
drug and the polymer (f3 � f1, f3 � f2), it follows from
eq. (30) that

��V̂FH/�

��1

 0 (34)

��V̂FH/�

��2

 0 (35)

From an examination of eqs. (33)–(35), it is reasonable
to expect that D11/Ds and D22/Ds will decrease with
increasing �1 and �2 and that some form of an expo-
nential concentration dependence will be operative.
Consequently, as an approximate representation of
the above trends, we propose the following exponen-
tial-type dependence in which D11/Ds and D22/Ds

decrease with increasing C1 and with increasing C2:

D11

Ds
�

D22

Ds
� exp���A1C1 � A2C2�	 (36)

Here, A1 and A2 are positive constants. Note that
expressions of the form of eq. (36) are not a direct
result of free-volume theory, as is stated sometimes in
the literature. The form of eq. (36) was chosen and is
used here because it facilitates the analysis and be-
cause it is consistent with the characteristics of the
free-volume theory of diffusion. Note that in eq. (36)
the concentration dependence of the diffusion coeffi-
cients appears in the numerator of the argument of the
exponential, whereas in free-volume theory the major
part of the concentration dependence of self-diffusion
coefficients appears in the denominator of the argu-
ment of the exponential. Consequently, although eq.
(36) is consistent with free-volume theory, the exact
form of the concentration dependence is different.

It follows from eqs. (10)–(19) and eqs. (31) and (36)
that

C1��, �� � C2��, �� (37)

so that the dimensionless concentrations of drug and
polymer are identical in the diffusion field. Conse-
quently, for the present analysis, eq. (36) can be re-
written as

D11

Ds
�

D22

Ds
� exp��kC1	 (38)

where the positive constant k is simply

k � A1 � A2 (39)

It is evident from the above analyses that both C1 and
C2 can be determined by solving eqs. (10)–(14) by

using eq. (38) for the concentration dependence of the
diffusion coefficient D11/Ds.

SOLUTION OF TRANSPORT EQUATIONS

Although an analytical solution to eqs. (10)–(14) and
(38) can be obtained for the case k � 0 (constant
diffusion coefficient), it is not possible to derive an
exact, analytical solution for the case k � 0 because the
partial differential equation is nonlinear. Conse-
quently, we follow the procedure used in an earlier
investigation5 and use a weighted residual method
(the method of moments) to obtain an approximate
solution to the nonlinear diffusion problem. The fol-
lowing trial function is used for C1, the concentration
field for the drug,5

C1 �
1
2 �erf� � � 1

2�1/2�� � erf� � � 1
2�1/2��� (40)

where the function �(�) must be determined from the
moment equations. The time dependence of � is given
by the expression5

�
0

0
k erf� 1

2� 1/2�d�

1 � exp��k erf� 1
2� 1/2�� � � (41)

where

0 � �2� (42)

The function 0(�) and, hence, �(�) can be determined
from eq. (41) by using a straightforward numerical
integration procedure. It is convenient to define the
amount of drug retained in the polymer matrix as the
mass M1 of drug per unit area still in the region 0 	 x
	 L0. Consequently, it can be shown5 that

M1

M10
� �

0

1

C1d� (43)

where M10 is the initial mass of drug per unit area in
the region 0 	 x 	 L0. Finally, it can be shown5 from
eqs. (40) and (43) that the fraction of drug that has
been released, 1 � (M1/M10), can be determined by
using the following expression:

1 �
M1

M10
� 1 � erf� 1

�1/2� � ��

��
1/2

�e��1/�� � 1� (44)

The concentration field for the polymer, C2(�, �), can be
calculated directly from eqs. (37) and (40)–(42) and the
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fraction of polymer dissolved can be determined from
eq. (44) by replacing M1 and M10 with M2 and M20.

RESULTS AND DISCUSSION

As indicated above, the time scales for polymer disso-
lution and drug release can be made comparable by
adjusting the molecular weight of the polymer so that
Ds1 � Ds2 � Ds. In addition, the strength of the con-
centration dependence for D11/Ds (and thus for D22/
Ds) can be adjusted by choice of polymer type. A
polymer with a lower fractional hole free volume
should lead to stronger concentration dependence.
The strength of the concentration dependence can be
characterized by the diffusivity ratio r:

r �
D11�C1 � 0�

D11�C1 � 1�
� ek (45)

Fractional drug release curves can be constructed by
plotting the fraction of drug that has been released
[based on eq. (44)] versus the dimensionless time.
Fractional drug release curves for r � 1 (constant
diffusivity) and r � 108 (strong concentration depen-
dence) are presented in Figure 1. These curves also
represent the fraction of polymer that has dissolved.
The curves presented here are similar in shape to
experimental fractional drug release curves found in
the literature, including the following references with
pertinent figure numbers given for each reference: ref.
1 (Fig. 1b); ref. 2 (Figs. 7a and 8a); ref. 3 (Fig. 17); and
ref. 4 (Fig. 8). The two curves in Figure 1 of our study
present a range of shapes which essentially includes
the shapes of curves presented in refs. 1–4. Also, Fig-
ure 16 of ref. 3 includes a curve of the fractional

amount of polymer that has dissolved for the lowest
molecular weight polymer used. This curve is similar
in shape to the curves of Figure 1 of our study. Fur-
thermore, this experimentally obtained polymer dis-
solution curve for the lowest molecular weight is
quantitatively not much different than the experimen-
tal drug release curve also presented in ref. 3. In the
theoretical model proposed here, the polymer disso-
lution and drug release curves are taken to be identi-
cal. However, for the higher molecular weights, there
are significant differences between the experimental
fractional polymer dissolved and fractional drug re-
leased curves of ref. 3. It is not clear what causes the
significant differences at the higher molecular weights
because there are two complicating factors in the ex-
periments of this reference. First, the experimental
system contained a large amount of a filler component
in addition to the drug, polymer, and solvent. Second,
the experimental system was not static because a mag-
netic stirrer was employed. Consequently, it is possi-
ble that these complicating factors contributed to the
molecular weight effects observed in the experiments
of ref. 3.

A constant drug release rate (zero-order delivery) is
of course achieved if the curves of fraction of drug
released versus time are linear. Visual examination of
the drug release curves in Figure 1 indicates that the
curves appear to become more linear as r and k in-
crease (stronger concentration dependence). A con-
stant rate of drug release can be achieved for all time
only if the second time derivative of a fractional drug
release curve is zero everywhere. This, of course, can-
not be achieved for a diffusion-dominated transfer
process, but it can be shown theoretically that the
second time derivative at a given level of fractional

Figure 1 Fractional drug release curves for two values of r, the diffusivity ratio defined by eq. (45).
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drug release decreases in magnitude for sufficiently
large k as k undergoes a further increase. Conse-
quently, linear behavior can be approached for suffi-
ciently large k, and large k values can be obtained by
an appropriate choice of polymer type. Polymers with
small fractional hole free volumes should lead to large
values of k because there will be large changes in the
fractional hole free volume of the entire system when
a low hole free-volume polymer is mixed with a high
hole free-volume solvent. Note that the only input
data needed for the proposed model are the diffusion
coefficients D11 and D22.

Finally, it is useful to report half-time values for the
polymer dissolution or drug release processes because
such values provide a measure of the time scales of
these processes. The half-time for the dissolution or
drug release process can be defined as the dimension-
less time when the fraction dissolved or released is
equal to one-half. The dependence of the half-time for
the present system on diffusivity ratio r is presented in
Table I. It is evident that the time scale of the dissolu-
tion and release processes is only moderately sensitive
to the strength of the concentration dependencies of
the mutual diffusion coefficients. The results in Table
I were previously presented in Figure 3 of ref. 5, but
the ordinate of the graph should have been designated
as (half-time)1/2, not half-time.

CONCLUSION

The contributions of this paper can be summarized as
follows:

1. A new analysis was formulated for the drug
release and polymer dissolution processes.

2. It was shown that appropriate choice of poly-
mer molecular weight can be used to achieve
comparable time scales for polymer dissolution
and drug release.

3. It was shown that a constant drug release rate
can be approached by choice of polymer type,
namely by using amorphous, uncrosslinked
polymers with small fractional hole free vol-
umes.

4. It was shown that calculated theoretical frac-
tional drug release versus time curves are sim-
ilar in shape to a very representative sample of

experimental fractional drug release curves
found in the literature.

In the formulation and solution of the transport
equations, a thin film geometry was utilized, and it
was assumed that there was no external flow in the
fluid surrounding the dissolving polymer-drug sys-
tem. Also, some additional assumptions were intro-
duced in the formulation of the theoretical diffusiv-
ity—concentration relationships. All of the above as-
sumptions are not necessary and were introduced
simply to facilitate the analysis. Furthermore, the pur-
pose of this article was not a direct comparison of
theory with experimental data but rather the illustra-
tion of a new method of analysis and the utilization of
this method to suggest an optimal formulation for the
drug-polymer system.

In in vitro experiments which are used to mimic in
vivo conditions, drug dosages are usually cylindrical
or spherical in shape; a well-stirred surrounding fluid
is utilized, and materials with very specific mutual
diffusion coefficient-concentration relationships are
utilized. The analysis presented here can easily be
extended to cylindrical or spherical geometries and to
any concentration dependencies for the mutual diffu-
sion coefficients. Taking into account the effect of an
external flow field is more difficult because geometric
details of the particular apparatus utilized must be
included in the analysis and the resulting flow field is
often very complex. Because it is not clear that a
well-stirred surrounding fluid actually is an accept-
able representation of in vivo conditions, it perhaps is
better to carry out experiments on a static system (if
possible) because such experiments are easier to ana-
lyze and will provide maximum polymer dissolution
and drug release times for a given polymer-drug-
solvent system. Note that because complete mutual
diffusion data and all necessary details of the external
flow field have not been provided, we do not believe
that it is possible to carry out a direct quantitative
comparison of our theory with experimental data cur-
rently available in the literature.

Finally, for drug release using an amorphous, un-
crosslinked polymer, it appears to us that both drug
release and polymer dissolution are largely controlled
by drug and polymer diffusion. Thus, an analysis such
as that presented here is useful in selecting a polymer
type and molecular weight to approach a constant
drug release rate.

This work was supported by funds provided by the Dow
Chemical Co.

References

1. Conte, U.; Colombo, P.; Gazzaniga, A.; Sangalli, M. E.; La
Manna, A. Biomaterials 1988, 9, 489.

TABLE I
Dependence of Half-Times on Diffusivity Ratio

Diffusivity ratio, r Dimensionless half-time

1 0.950
10 1.96
106 9.80
108 12.5

98 VRENTAS AND VRENTAS



2. Ju, R. T. C.; Nixon, P. R.; Patel, M. V. J Pharm Sci 1995, 84,
1455.

3. Ju, R. T. C.; Nixon, P. R.; Patel, M. V.; Tong, D. M. J Pharm Sci
1995, 84, 1464.

4. Siepmann, J.; Kranz, H.; Bodmeier, R.; Peppas, N. A. Pharm Res
1999, 16, 1748.

5. Vrentas, J. S.; Vrentas, C. M. J Polym Sci, Polym Phys Ed 1998,
36, 2607.

6. Narasimhan, B. Adv Drug Delivery 2001, 48, 195.

7. Vrentas, J. S.; Vrentas, C. M. Macromolecules 1996, 29, 4391.
8. Vrentas, J. S.; Vrentas, C. M. Chem Eng Sci 1998, 53, 629.
9. Vrentas, J. S.; Duda, J. L.; Ling, H.-C. J Polym Sci, Polym Phys Ed

1984, 22, 459.
10. Vrentas, J. S.; Vrentas, C. M. Macromolecules 1994, 27, 4684.
11. Vrentas, J. S.; Vrentas, C. M. Macromolecules 1994, 27, 5570.
12. Vrentas, J. S.; Duda, J. L. J Appl Polym Sci 1976, 20, 1125.
13. Vrentas, J. S.; Vrentas, C. M. J Appl Polym Sci 2003, 89,

1682.

DIFFUSION-CONTROLLED POLYMER DISSOLUTION 99


